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ECE 113D Final Project: SET Classifier
Tyler Price, Bradley Schulz

Abstract — In this project we apply computer vision
techniques to the card game SET in which players must identify
groups of complementary cards based on 4 visual attributes.
With this, we aimed to gain experience with computer vision
algorithms, especially in the context of embedded systems,
through working to find a technological approach to a common
game played among friends. We developed algorithms to classify
each attribute of the cards — number of shapes, type of shape,
shape color, and shape fill — all with the goal of being as
computationally lightweight as possible. In the end, we created a
system that is approximately 86% effective and can identify valid
sets of cards in under 5 seconds.

I. INTRODUCTION

A. History
Computer vision is the process by which computers aim to

mimic humans’ natural vision systems to be able to classify
and localize objects. This field has existed since 1960 when
Larry Roberts at MIT began theorizing how to extract
3-dimensional information from a 2-dimensional image [1].
There are numerous applications for computer vision
including automation of manufacturing tasks, autonomous
driving, and inspection of finished products [1].

Computer vision tasks can involve one or either of two
tasks: classification—determining to which pre-defined class
an image belongs—and localization—the process of
identifying the location of one or more distinct objects within
an image [2]. For tasks that require both localization and
classification, there are many algorithms that exist to both
localize and classify multiple objects within a single image
such as RCNN [3], SIFT [4], and YOLO [2]. However, these
algorithms are often too computationally expensive for smaller
scale embedded systems, and much research is currently
exploring how to simplify these complex tasks to work on
real-time embedded systems [5] [6] [7]. Since embedded
systems are subject to often significant power and
performance constraints due to their small size and lack of a
constant source of power, it is vital that any image processing
tasks operating on an embedded system are as efficient as
possible. In many cases, one must find an algorithm that is
optimized for the specific task at hand so that it most
efficiently uses the hardware resources available.

In this project, we apply computer vision to the card game
SET. This game was invented in 1974 by Marsha Jean Falco
while studying the genetics of dogs [8]. The goal of the game
is for players to identify sets of 3 cards as fast as possible.
There are 81 cards, each with 4 attributes: color, shape type,
number of shapes, and shape fill. There are 3 variations of
each of the 4 attributes for a total of 34 = 81 total cards. Table I
shows the possible attributes.

TABLE I
SET CARD ATTRIBUTE DESCRIPTIONS

Attribute

Shape Type Oval Diamond Squiggle

Shape Color Red Green Purple

Shape Fill Empty Striped Solid

Number of Shapes 1 2 3

A valid set is one in which each attribute of each of the
three cards are either all the same or all identical. For example,
the following cards are valid sets.

TABLE II
EXAMPLE VALID SET

Card Shape
Type

Shape
Color Shape Fill # of

Shapes

1 Oval Red Solid 2

2 Oval Purple Empty 2

3 Oval Green Striped 2

Although this card game may appear simple, it presents
many interesting problems relating to combinatorics,
error-correcting codes, and Fourier analysis [8].

B. Global Constraints
Working with embedded systems comes with several

inherent constraints, as the computing resources on small
devices are often significantly limited. All power must come
from a battery, so increases in power consumption require
either a larger battery or more frequent recharging. The
number of computations should also be minimized, since
increasing the computational demand requires either a larger
processor or more power. There is room for optimization in
both hardware and software, but these power and
computational constraints never go away.

In our context, we are limited by the hardware available to
us in our immediate context. We were provided the OpenMV
Cam H7 which contains an STM32 microcontroller and
OV7725 camera module. Both of these hardware components
have limits in computational power and camera resolution,
respectively. Moreover, the software libraries available on the
OpenMV IDE used for this device are much more limited than
what is available on other Python distributions. Standard
Python libraries such as Numpy and OpenCV have optimized
functions that use code written in C to speed up their



2

execution. However, since these two libraries are not available
on the OpenMV IDE, any replacement function will not be as
fast because we can only write Python-based substitutions in
this IDE. Thus, we don’t have the capabilities to implement
the optimized C code that would make these algorithms run
more efficiently on the available hardware.

II. MOTIVATION
In our prior research, we found a few other projects that

solved the game SET using real time image processing,
although none of these were intended to be used on embedded
systems [9] [10] [11]. Some focused solely on the algorithm
side of the problem with the assumption that the code would
be running on a system with large computational resources
and access to the OpenCV Python library [9] [10]. One system
we found that considered hardware targeted the code to run on
a mobile phone as a standalone app, which again has plenty of
computational resources [11]. Regardless, none of the
documented attempts we found to make a system to solve the
game SET were designed to be lightweight algorithms that can
run on a low-power device. We wanted to design something
that could operate on its own that does not require complex
hardware and can be inconspicuously held within your hand.
We also chose this task because we wanted to gain

experience with embedded image processing. With the rising
prevalence of computer vision in applications such as
autonomous vehicles, manufacturing, security, and even
agriculture, we wanted to gain experience in this technology
which will likely be at the forefront of technology in the
coming years [12]. We had some theoretical knowledge of the
concepts behind computer vision, but no hands-on experience
implementing these tools ourselves. We had worked with
some baseline computer vision functions in Python, but never
beyond class projects.
Moreover, having to perform image processing on an

embedded system is an excellent opportunity to learn these
skills while aiming to keep the system as simple as possible.
Simpler solutions that use fewer computational resources are
almost always preferable, and using an embedded system
forces us to work with resource constraints that arise in real
life engineering. In the future, we hope to apply the skills
learned in this project to real world projects requiring efficient
image processing in applications such as edge IoT devices.
Lastly, we enjoy playing SET with friends, and we wanted

to work on a project with personal significance. We aimed to
be able to use this system in real gameplay to win actual
games of SET.

III. APPROACH

A. Team Organization
Our team consisted of two people: Tyler Price and Bradley

Schulz. We both have experience working with embedded
systems and real-time processing, but our experience with
computer vision differed slightly. Bradley has taken more
coursework on machine learning, computer vision, and
Python, so he focused more on developing and testing the

algorithms before implementing them on the final board. Tyler
focused more on the hardware side by adapting the algorithms
developed by Bradley to run on the final board. This involved
several changes to the algorithms based on the constraints
arising from real-life implementation. We met every week to
discuss our progress and collaborate on any issues that arose.

B. Plan and Implementation
We had 10 weeks to develop our project, and we set the third

and seventh weeks as major milestones for our progress. For
the third week, our goals were to be able to read images from
a camera on the H7 and have an algorithm that could classify
an image of a card. By week 7, we aimed to expand that
algorithm to cover both segmenting the raw image into
individual images of each of the 12 cards in play and
classifying each card in the image. On the hardware side, we
also aimed to have a working LED matrix by week 7 that
would be our main user interface.
We successfully met both major milestones. Reading data

from the camera went smoother than we intended, and we
were able to get this working by the end of the first week. For
classifying an image of a single card, we were able to get this
working on Google Colab by the third week. It took some
more work than we intended to port our algorithms from
Google Colab (where we developed them) to the H7 due to
differences between the standard Python language and
MicroPython which runs on the H7, but we were still able to
complete the transition by week 7. We had to make some
significant changes to the algorithms, but we hit our week 7
milestone nonetheless.
The matrix was also significantly easier than we anticipated

to get working, and we had it up and running by week 4. We
decided to use a pre-made matrix which simplified both
hardware and software development thanks to pre-made I2C
libraries built for the matrix.
However, there were several challenges we encountered

along the way. Thresholding and pre-processing took a
significant amount of trial and error to perfect. OpenMV's
automatic thresholding function performed inconsistently
across different lighting conditions and shape colors, and glare
would cause pixels from the card background to pass through
thresholding. This severely impacted the reliability of our
original shape counting algorithm which relied on isolating
pixels corresponding to the shapes. We overcame the effects of
glare by pivoting to an edge-based shape counting algorithm.
We also encountered challenges due to the differences in the

environment we used to develop the algorithms on Google
Colab and real-life execution. Initially, we used a pre-made
training set of images we found on Github to train our
classification algorithms. However, the images collected by
the OV7725 camera on the OpenMV board were of much
lower resolution and had more noise than these training
images. Since some of our algorithms relied on empirically
determined thresholds and a custom-trained CNN, our
algorithms became significantly less accurate when we first
ported them to the H7. We overcame these obstacles by
generating our own custom training data and redeveloping our
malfunctioning algorithms.
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Additionally, not all the library functions we used on Google
Colab were available on OpenMV. We used OpenCV and
Numpy on Google Colab since we were familiar with these
libraries and using them made it very fast to develop and test
algorithms. We assumed that equivalent operations would be
available on OpenMV, but there were times when there were
not. This was the case in our color and fill classification
algorithms which used OpenCV to isolate shapes and NumPy
to analyze color ratios through their standard deviation. We
ended up finding more efficient algorithms that analyzed the
colors in the LAB color space instead of the RGB color space
like our previous algorithms.
A full outline of our weekly goals is in Appendix A. We

successfully accomplished all our weekly goals with the
exception of week 6 due to issues implementing the functions
from Google Colab in OpenMV.

C. Standard
For most computer vision tasks, OpenCV is the go-to code

library. Even competing software libraries recommend
OpenCV because it is easy to work with and can be used with
languages such as Python, C++, MATLAB, Java, and more
[13] [14] [15]. This library contains numerous pre-made
classes and functions that remove the need to re-implement the
algorithms such as blurring, filtering, thresholding, and even
object detection. Using the OpenCV library makes it very easy
to develop and test algorithms.
However, OpenCV is not a standard library for embedded

hardware. Many embedded systems that run Python use a
lighter-weight version called MicroPython or one of its
derivations such as Adafruit’s CircuitPython [16].
MicroPython implements a pared-down version of the main
Python language so that it runs smoothly on embedded
systems where computing resources are more limited. This
means that it does not have access to all the libraries available
on a full Python distribution; it only contains the most
important and applicable ones [16].
To communicate with the LED matrix, we use the I2C (or

Inter Integrated Circuit) standard for communication. This
standard was developed by Philips Semiconductors and is
currently in version 6.0 [17]. It uses a four wire interface with
a power, ground, data, and clock line that can connect multiple
devices all in parallel. It is used in many inter-board
applications where devices need to communicate with each
other without many wires. We chose to use it because it is a
well-developed standard and is supported by the hardware we
used.

D. Theory
Although the computer vision functions we used from

OpenCV and OpenMV implement all the computer vision
algorithms for us, it is important to understand what
computations are occurring behind the scenes. One reason for
this is that knowing which algorithms are more
computationally expensive than others allows us to choose
algorithms that minimize the complexity of our system and
increase the efficiency of our classification.

Convolution and Filtering
Convolution is the backbone for many of the image

processing algorithms we employ. Convolution is integral for
blurring the image, detecting edges, and the CNN that
classifies the type of shape. In computer vision, convolution is
the result of essentially sliding a kernel (which often
represents a specific filter) over an image and computing the
dot product of the overlapping area of the image with the
kernel..
The convolution operation in computer vision is based on

the mathematically rigorous definition used on continuous
signals but adapted for images with discrete pixels.
Specifically, the convolution of an input image I(x, y) with a
kernel K(x, y) is defined as:

(I * K)(x, y) = ∑∑ I(i, j) K(x-i, y-j) (1)

where * denotes the convolution operator, and ∑∑ denotes
summation over all possible values of i and j that overlap with
the kernel K at the point (x, y).
The main intuition behind convolution in computer vision is

that the kernel K acts as a local filter that extracts specific
features or patterns from the image. Kernels can be used to
search for specific patterns (for edge detection and CNNs) or
to incorporate information about surrounding pixels (for
blurring, dilation, and erosion).
There are multiple kernels we used in our project. To smooth

the images and reduce noise, we used a gaussian kernel. One
main advantage of this kernel is that its circular symmetry
makes it less computationally intensive because it can be
implemented as two single-dimension convolutions instead of
one expensive 2-dimensional convolutions [18]. We used a
OpenMV’s default 5x5 Gaussian kernel [19] which is shown
in Table III.

TABLE III
GAUSSIAN KERNEL

Gaussian Kernel

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

The Canny edge detection algorithm, which we used to
detect edges, uses the Sobel operator [20]. The Sobel operator
consists of two 3x3 kernels, one for detecting edges in each
the horizontal and vertical directions [21]. The idea behind
this algorithm is to apply a kernel to the image that
emphasizes areas where there are rapid changes in the
intensity or color of neighboring pixels. Such rapid changes
are typically indicative of edges or boundaries between
different regions in the image. Since there are two directions
in a 2-dimensional image, we need two kernels to identify
rapid changes in both of these directions. The kernels are
shown in Table IV.
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TABLE IV
SOBEL FILTERS

Horizontal Sobel
(Gx)

Vertical Sobel
(Gy)

-1 0 1 1 2 1

-2 0 2 0 0 0

-1 0 1 -1 -2 -1

The final edge-detected image is the magnitude of the
gradient at each pixel location, which is computed as the
square root of the sum of the squared horizontal and vertical
gradients. This results in an image where the pixels
corresponding to edges or boundaries have high values, while
the rest of the image has low values.
Dilation and erosion are additional operations that use

convolution. Dilation expands the boundaries of the objects in
an image while erosion shrinks them. Dilation and erosion are
often used together, sometimes repeatedly, as dilation can be
used to fill gaps and holes in an image while erosion can be
used to remove small objects or noise [22]. This is another
way of smoothing out noise and inconsistencies like gaussian
blurring.
We also use convolution in a convolutional neural network

(CNN) which is a common tool used in deep learning for
image classification tasks. In a CNN, convolutional layers
apply a series of learned kernels to an input image to extract
increasingly complex features. Additionally, max pooling
layers downsample the feature maps to reduce the
dimensionality of the input to subsequent layers. The output of
the final convolutional layer is then fed into a fully connected
layer that performs the final classification [23]. When
designing a CNN, the architect defines the size and number of
the kernels to apply to the image, and the training process
learns the optimal values for the kernels.

Image Representation and Color Spaces
Representing an image in different formats allows images to

be stored more compactly and simplify the process of
extracting relevant information. Our system uses grayscale
images, binary images produced by thresholding, and color
images in the LAB color space.
Grayscale images condense the multi-channel color values

into a single value describing how dark or light a pixel is. By
reducing the number of color channels from 3 to 1, converting
an image to grayscale reduces the memory required to store
the image and the amount of data required to process the
image.
Taking it one step further, grayscale images can be

thresholded such that each pixel is described by a single bit.
Given a threshold value, every pixel in the image is compared
to that threshold and replaced with a “1” if it is greater than
that threshold or “0” if it is below. Thresholded images are
very helpful for running shape detection algorithms since the
image is represented in a very simple, binary format.

However, hard-coded threshold values are not robust against
variations in lighting conditions and color intensities, as
different threshold values are required to properly threshold an
image under different conditions.
Otsu’s method is a common technique for computing the

ideal threshold value [24]. It works by testing out each
possible threshold value and measuring the variance among
the pixels above the threshold and the variance among the
pixels below the threshold. The optimal threshold value is the
one which minimizes the variances within the two classes
[24]. For example, when determining a threshold to separate a
dark blob from a light background, the variance between the
two classes will be minimized when one class only contains
dark pixels and the other class only light pixels.
We used Otsu’s method to determine the optimal binary

threshold to isolate the colored pixels on each card from the
white card background. We only need to consider the optimal
threshold value for the L channel, as white will always have A
and B values close to zero.
To represent color images, we use LAB color space, where

"LAB" stands for the three dimensions of the color space
which are “lightness”, “A” and “B” [25]. The LAB color
space is designed to be perceptually uniform, meaning that
distances between colors in the LAB space correspond to how
humans perceive color. This makes it a useful color space for
applications including color correction, color grading, and
image analysis [25].
The lightness dimension (L) in the LAB color space

represents the brightness of a pixel, with values ranging from
0 (black) to 100 (white). The A and B dimensions represent
the green-red and blue-yellow color spectra, respectively. The
A dimension ranges from -128 (green) to 128 (red), while the
B dimension ranges from -128 (blue) to 128 (yellow) [24].
The A dimension is especially helpful for us because two of
the possible card colors are red and green. The lightness
dimension is also helpful for identifying the fill of the image
since solid shapes are darkest and empty shapes are lightest.

Perspective Warping
Perspective warping, also known as perspective transform, is

the process of altering the perspective of the image through
interpreting an image’s 2-dimensional structure in a
3-dimensional (3D) space and then mapping relevant 3D
coordinates to new 3D coordinates which are shown in a new
2-dimensional image. This is useful for applications such as
correcting distortions caused by a camera lens or when
creating panoramic images [26].
The perspective warping transformation is typically defined

by a 3x3 matrix called the homography matrix which maps the
original image points to their new positions. This matrix can
be computed using the correspondences between points in the
original image and their desired corresponding points in the
new image [26]. We use perspective warping to take the
outline of each card from the original image and transform
them to a standard size of 60x90 pixels that appears as a
head-on view from directly above the card.
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E. Hardware
On the hardware side, we had two main components: an

OpenMV H7 board and an LED matrix. The OpenMV board
combines an STM32H743VI microcontroller with an OV7725
camera [27]. The camera has a maximum resolution of
640x480 pixels with 16 bits per pixel, but the resolutions and
frame rate can be altered to adjust performance. The
microcontroller runs at 480 MHz with 10 available GPIOs on
the board. The OpenMV board also includes a micro-SD card
holder and onboard RGB LED [27].

Fig. 1. OpenMV H7 board [27]

The matrix is an 8x8 green LED matrix created by Adafruit
that is 1.2” x 1.2” [28]. To control this matrix through I2C, we
used a matrix controller built off the HT16K33 LED driver
from Adafruit [29]. Although Adafruit’s library
(https://github.com/adafruit/Adafruit_CircuitPython_HT16K3
3) for this controller is written for CircuitPython and is not
directly compatible with OpenMV, we were able to recreate
the controller for the OpenMV environment without
significant trouble.

Fig. 2. 8x8 LED matrix

These two components communicate using I2C which only
requires 4 wires (+3.3V, GND, SCL, SDA). Since Adafruit’s
controller board has on-board pull-up resistors on the I2C data
and clock lines, we didn’t need any external passives.

To power our system, we used a 3.7V lithium polymer
(LiPo) battery. This plugs directly into the OpenMV board
through a JST connector. To make it simpler to turn on and off
the board, we added a small power switch between the battery
and the board.

F. Software
On the software side, we used Google Colab to develop our

algorithms and the OpenMV IDE to interface with the
OpenMV board. The benefits of using Google Colab to
develop the algorithms is that all of our code is automatically
shared between us and that all required Python packages were
already installed. Using Python in a Jupyter Notebook on
Google Colab made it very fast to develop and test algorithms
before implementing it in MicroPython to run on the H7.
OpenMV’s IDE is custom built to interface with the

OpenMV board. It uses a custom version of MicroPython with
extra libraries to support the OpenMV board. Most notably, it
includes a range of image processing functions that we could
use in our system. However, the functions available are not a
one-to-one match for the functions available in OpenCV, so
we had to substitute and adapt our algorithms when we moved
our algorithms from Google Colab to MicroPython. However,
there are also algorithms available in OpenMV that are not
available in OpenCV which we were able to utilize to increase
the robustness of our algorithms.

G. Operation
There are many steps in our software system which are

briefly outlined in Fig. 3. The algorithm starts with
preprocessing to aid in identifying the 12 cards. Once it finds
all 12 cards, it runs the classification algorithms for each of
the four attributes: number of shapes, type of shape, color, and
shape fill. Once it knows the attributes of each card, it finds
the sets and illuminates the LED matrix with the sets it finds.

Fig. 3. System architecture block diagram

https://github.com/adafruit/Adafruit_CircuitPython_HT16K33
https://github.com/adafruit/Adafruit_CircuitPython_HT16K33


6

The first step in our classification algorithm is to preprocess
the image to decrease noise, decreasing image size, and
making relevant features clearer. Our preprocessing steps are
to convert the image to grayscale, blur it, threshold the pixels,
and then dilate and erode the binary pixels. The result is a
binary image where the only white pixels are ones that show
the edges of cards and shapes on the cards. A binary image is
much smaller than a colored image because it only requires
one bit to describe each pixel instead of 16 bits to describe a
colored value. The OpenMV image library provides several
functions that reduce these steps into a few lines of code.

img_gray.to_grayscale()
img_gray.gaussian(2, threshold=True, \

offset=6)
img_gray.dilate(1)
img_gray.erode(1)

Fig. 4. Preprocessing steps

Fig. 5. Example card localization

Once it has the thresholded image, the code localizes the
individual cards using OpenMV’s findBlobs function which
identifies contiguous regions of pixels of a certain value. We
were able to filter for blobs of a certain size, ignoring any
erroneous background objects that made it through
thresholding. Once all the card-sized blobs had been isolated,
we used OpenMV’s findRects function to identify coordinates
of the card corners, which we could then use to perspective
warp and resize each card to be a 60x90, head-on image.
To count the number of shapes, it first runs the Canny edge

detection algorithm to identify the outline of the shapes. Then,
it applies various binary masks to the image and counts how
many colored pixels fall outside that mask. The intuition
behind this is that we know where each shape should be on the
card, and we can test to see if the placement of edges align
best with 1, 2, or 3 shapes.

Fig. 6. Binary masks for 1, 2, and 3 shapes
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Fig. 7. Application of binary masks for images of cards with
1, 2, and 3 shapes

Once we know the number of shapes, we can extract a
24x52 pixel rectangle where each shape is. We initially tried to
identify bounding rectangles using image processing libraries,
but we found that we achieve the best results when we use
standard shape locations based on where the shapes typically
are on a card. Although this may not lead to perfectly bounded
shapes, it is more robust to noise. We run this 24x52 grayscale
rectangle through a CNN which classifies the shape as either
an oval, diamond, or squiggle. If there are multiple shapes on
the card, we run each one through the CNN and combine the
results to get the end classification.
We found that the best CNN architecture for us is 2

convolution and pooling layers followed by a fully connected
layer. We initially had only one convolution and pooling layer,
but adding another set of convolution and pooling decreased
the number of parameters due to fewer nodes entering the final
fully-connected layer. Through trial and error, we found that
this final architecture provided the ideal balance of

classification accuracy and model complexity. Since memory
and computational resources are limited on the H7, reducing
complexity was a priority for us.

Fig. 8. Shape classification CNN architecture. Diagram
generated using https://alexlenail.me/NN-SVG/LeNet.html

This CNN utilizes tensorflow lite which is a tensorflow
distribution designed specifically for embedded systems. We
uploaded images taken by the OpenMV board to Google
Colab, augmented the dataset by cropping and rotating the
images to yield 4000 total images from the original 250
training images we captured. We trained the CNN on 3200 of
these images while withholding 800 of them as a validation
dataset. After training for 50 epochs, we achieved 100%
classification accuracy on both the training and validation
dataset. While this may seem like overfitting, we are confident
that the model does not overfit the data because the
classification task is fairly simple and the model retained
100% accuracy on the validation dataset which it had not seen
before.
Once the model was trained, we exported it as a “.tflite” file

which is a binary file that can run directly on the H7. In this
process we had to quantize this model so it uses 8-bit integers
instead of floating point numbers. The OpenMV IDE is set up
to directly run .tflite files through a single function call to the
tensorflowlite library.

cnn_out = tf.classify(model_file, shape)

In this function call, “model_file” is a string that is the path
to the .tflite file on the OpenMV board’s filesystem, and
“shape” is an “Image” object with the image to classify. This
Image object is part of the OpenMV standard library and is the
default type for all images captured by the onboard camera.
The image we feed into the CNN has already been converted
to grayscale as well as reshaped and cropped to 52x24 pixels.
For color classification, the first step is to isolate the colored

pixels on each card from the background. We accomplish this
using adaptive thresholding to find ideal threshold values to
separate the white background from the colored shape. Next
we calculate the average LAB values of the colored pixels and
use the results to determine color. Green cards have negative
A channel values, while red and purple cards have positive A
values, so distinguishing green from red and purple is trivial.
Red and purple cards have slightly overlapping B channel
values depending on lighting conditions, with red tending to
have slightly higher B values than purple. We determined
cutoff values for red and purple through trial and error which
are shown in Table V.

https://alexlenail.me/NN-SVG/LeNet.html
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TABLE V
COLOR THRESHOLDS

Color Condition

Green A < 4

Purple B ≤ -12, -12 < B < -4 and L < 57 - B

Red Otherwise

Due to visual aliasing, the color in the center of striped
shapes blurs into a lighter version of the solid color. We took
advantage of this blurring phenomenon in our final algorithm,
which simply considers the LAB values within a small 12x6
region within the center of each shape. The region is sized
such that it does not include the shape boundary for any of the
3 shapes. Different decision thresholds based on the average
LAB values were empirically determined for each card color.

TABLE VI
FILL THRESHOLDS

Color Solid Empty Striped

Red A > 40 A < 10, B < 5 Otherwise

Green A < -30 A > 0, B < -2 Otherwise

Purple A > 20 L > 85, A < 7 Otherwise

The combined attribute classification diagram is below in
Fig. 9.

Fig. 9. Attribute classification steps

Once we know all four attributes of each of the 12 cards, we
can run the set classification algorithm. Our algorithm takes
advantage of two important observations: 1) given any two
cards, there is only one card that will complete the set, and 2)
if each variation of a card's attribute (ex: red, green, or purple)
is assigned a number, then a set where each card differs in that
attribute will have a consistent sum of the numerical values of
that attribute. i.e. (red = 0) + (green = 1) + (purple = 2) = 3.
The set finding algorithm iterates through each pair of cards,

determines which card would complete the set, and then
searches the remaining unchecked cards for the desired card.
Manually checking each combination of 3 cards requires
iterating through all possible combinations among the 12 cards
in play for a total of 220 comparisons.
Then, we display the final sets on an 8x8 green LED matrix.

The code creates a Python object that controls the matrix and
contains methods to set individual pixel values or patterns on
the matrix. This makes it very straightforward to interact with
the matrix. For example, the following 2 lines of code creates
the matrix controller object and then illuminates two pixels
corresponding to card “i”.

m = MatrixController()
m.set_card(i, True)

We also wrote a few functions to illuminate custom shapes.
We wrote a function that converts a 2D array representing the
desired matrix values into a compact 8-byte representation that
can be succinctly stored on the H7. Then the H7 can read
those 8 bytes and illuminate the corresponding pixels in the
matrix. These custom shapes are used to create a custom
startup animation that displays the word “SET” one letter at a
time.

Fig. 10. The letter “S” created using out custom animation
generation code

The system blinks each valid set three times so the user has
time to correlate the pixels on the matrix to cards in play. If
there are multiple sets, it cycles through all of them.
Links to our full code as well as a demonstration are in

Appendix B.
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IV. RESULTS

A. Description
We measured classification accuracy by classifying each of

the 81 cards one time. The results are summarized in Table
VII.

TABLE VII
CLASSIFICATION ACCURACY

CLASSIFICATION ACCURACY

COUNT 98.8%

FILL 85.7%

COLOR 98.8%

SHAPE 100%

We defined classification speed to be the length of time
between the system beginning classification and beginning to
output results to the matrix. The device could classify all the
cards and start displaying sets in under 5 seconds.

B. Discussion
All classifications besides fill were approximately 100%

accurate. However, since all attributes of a card are important
in determining whether a group of three is a valid set, the
overall accuracy of the system is only as accurate as the worst
performing classification, in this case fill with 85.7%
accuracy. Determining whether a card has a solid fill was easy,
and all incorrect fill classifications happened on empty or
striped cards. Our initial approach considered the ratio of
white to colored pixels in the center of the shapes. However,
this technique is inconsistent because visual aliasing would
sometimes cause the striped pattern to blur into a lighter
version of the color. This varies across lighting conditions, as
well as with how in focus the card is, which could change
depending on where within the playing area a card is situated
or how far the camera is held from the cards. Even after
switching to color based fill classification, however, there
seemed to be substantial overlap between LAB values
between empty and striped cards depending on lighting
conditions, making distinguishing between the two
challenging.
Counting the number of shapes took several iterations to get

working properly. Our first attempt involved using findBlobs
to count the number of distinct blobs on the thresholded card.
However, discontinuities were sometimes present in the shape
boundaries that caused more blobs to be detected than shapes,
especially with empty shapes. Using the shape masks proved
to be much more robust, but the thresholding was sensitive to
glare. Our final algorithm uses edge detection instead of color
based thresholding in combination with the shape masks, and
is close to 100% accurate.
Classifying the type of shape also works extremely well. It

was difficult to get the CNN setup, mainly due to the need to

quantize the model and export it in a format that can run on
the OpenMV board. We also noticed that augmenting the
training dataset with cropping and rotation significantly
improved the accuracy through making the model more robust
to variations in the input images. It is hard to debug a CNN
when it doesn’t work properly because it is near impossible to
understand what happens inside, but we are very satisfied with
the end performance.
Considering all processing and memory constraints, 5

seconds to completely localize and classify all cards and find
sets seems reasonable. Aside from shape classification, our
algorithms are not very sophisticated, as they simply consider
average color values or count pixels falling outside of certain
regions following thresholding and edge filtering. So, it is
unlikely alternate approaches would substantially decrease
classification time.

V. APPENDIX A

TABLE VIII
WEEKLY GOALS

Week Team Goal Tyler's Personal
Goal

Bradley's Personal
Goal

1 Setup development
environment

Get familiar with
OpenMV-H7 R1
camera module

Begin writing a
classifier that can take
an image of a card and
identify shapes and
patterns

2 Run first iteration of
respective code
assignments

Isolate a single card
out from the
background

Have a CNN on
Google Colab that can
successfully classify
the shape present on a
given card. A stretch
goal is to also identify
the number of shapes
on that card.

3 Work on
pre-processing so we
have a standardized
way of reducing
noise in the cards.

Run card localization
in realtime on the
OpenMV board to
determine FPS
performance.

Be able to classify the
shape, number of
shapes, and fill of a
card.

4 Get the combined
classification system
functioning on the
H7

Enable localization of
multiple cards by
using SD card to store
images, and
implement Bradley's
classification code on
the OpenMV board
using OpenMV image
library functions

Re-implement any
functions that are not
automatically
included by default on
MicroPython.

5 Implement
algorithms for whole
design

Implement Bradley's
classification code on
the OpenMV board
using OpenMV image
library functions

Develop an algorithm
to detect sets

6 Finish implementing
classification
functions in
OpenMV to have a

Continue
experimenting with
preprocessing steps to
isolate shape

Increase the accuracy
given new data from
the integrated system.
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unified software
system

bounding boxes

7 Determine which
algorithms/approach
es we want to use in
the end
preprocessing and
classification system

Implement color and
fill identification

Continue porting my
classification code to
OpenMV. Given
additional training
data from Tyler, test
classification
algorithms for
robustness.

8 Begin working on
the physical design
of the end product

Improve fill
classification accuracy
and begin CAD for
device enclosure

Find out how to run
the H7 without being
connected to a
computer. This means
finding a battery and
making our program
run by default.

9 Assemble physical
product and improve
performance through
testing.

3D print enclosure
and assemble system.

Begin drafting final
report

10

Prepare and practice
final presentation

Finish assembly and
integration of
set-finding +
displaying code with
classification code,
record demo, and
practice presentation.

Finish a draft of the
final report

VI. APPENDIX B
The code we created for this project can be found on Box at:

https://ucla.box.com/s/5kbnkuux7agr61hy93tcf1idzzip6ldq

A demonstration video can is located in the following folder:
https://ucla.box.com/s/b68szhstse4bejrl94q6z3b9k68oqslg
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