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Abstract—In this project we implemented a heterogeneous
processor that supports fine-grained switching between two back-
ends: one high-performing out-of-order backend and another
low-power in-order backend. A shared always-on (AON) block
provides shared caches and fetch logic as well as performance
tracking logic that dynamically switches between backends for
the optimal balance of power and performance. This allows the
processor to switch backends up to every 1000 instructions with
an overhead of under 40 cycles per switch and no need to
warm up the shared branch predictor and caches after a switch.
Implemented in TSMC 180nm technology, our final design is
9.24mm? and has a clock frequency of SOMHz.

I. INTRODUCTION

Designing a processor that effectively balances the tradeoffs
between power and performance is often difficult; making a
processor that is low-power often comes at the expense of
performance. Moreover, the need to emphasize low-power over
high-performance, and vice-versa, often changes dynamically
as a processor’s workload evolves over time. The ideal pro-
cessor lowers its power consumption as its workload becomes
less demanding, but then retains the ability to utilize higher-
performance hardware when the need arises.

A. Existing Designs

Power saving strategies vary between circuit-level and
architecture-level optimizations. Circuit-level approaches such
as clock gating, power gating, DVFES, body biasing, and more
can be combined with larger architecture-level designs. One
common architectural strategy to balance variable workload
demands are including both low-power and high-performing
cores on a single chip. These designs, such as ARM’s
big.LITTLE [1] architecture, performs a context switch be-
tween cores when the demands of the workload change. When
higher performance is desired, state is transferred from the
small core to the large core. When the workload decreases in
intensity, the state of the machine can be transferred back to
the small core to save power.

However, the issue with these designs is that transferring
state between cores incurs a large overhead. All active memory
blocks must be transferred to the new core over the chip’s
memory system, and the caches and branch predictor must
warm up again on the new core once execution resumes.
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B. Our Design

Our design, inspired by Lukefahr et al.’s work [3], mini-
mizes the overhead of switching between cores through having
a large and small core share their caches and fetch logic.
This allows a context switch to be performed very quickly
(in under 40 cycles), as only the contents of the register file
must be transferred between backends. Moreover, the caches
and branch predictor retain their state between switches,
eliminating the need to warm them up again after switching
backends.

II. ARCHITECTURE

Our architecture is composed of three separate domains:
an in-order backend, an out-of-order backend, and a shared
always-on domain containing an instruction cache, instruction
fetch, and a data cache. Each of the backends perform the
same functionality, but with a different balance of power and
performance. The in-order backend consumes one-third of the
peak dynamic power of the out-of-order backend, but at the
expense of drastically reduced performance.

The register online controller (ROC) is responsible for de-
termining when to switch cores. This module extracts program
execution statistics from the currently active backend and
estimates performance on the idle backend. Using this, it
chooses the backend that will achieve the optimal balance of
power and performance.

We use the RISC-V ISA supporting all integer operations.
This allows us compile and run programs from any language
supported by our RISC-V C compiler. Our address space is
64KB, meaning we support 16-bit address. Memory blocks
are 8 bytes each, so memory data buses are 64 bits wide. A
high-level functional diagram is in Figure 1.

A. Design Goals

To simplify integration, we designed the interfaces between
both backends and the always-on domain to be identical, with
the exception of a few minor performance tracking signals
used by the ROC to estimate performance. All interfaces
between blocks are registered at their inputs and outputs, and
we heavily leverage valid-ready handshakes to ensure no data
loss between blocks.
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Fig. 1: Top-level diagram of the functional blocks in the heterogeneous core

B. In Order Backend

The in-order processor (IOP) is designed to be a low-power,
simple processor designed using a standard 5-stage pipeline.
Since fetch exists in the always-on domain, there are actually
only four pipeline stages within this backend. However, under
certain stalling conditions, instructions may take much longer
to progress through the pipeline. To match the clock period
to the rest of the design, the multiplier is pipelined into four
stages, meaning that multiplication operations remain in the
execute stage for 4 cycles. Loads and stores also take longer,
especially if they miss in the data cache, as the data needs to be
fetched from off-chip memory. Since the backend is in-order,
these stalling conditions affect all subsequent instructions
and can incur rather large performance hits. However, these
performance hits allow for drastically minimized hardware
(and therefore power) when compared with the out-of-order
backend.

C. Out of Order Backend

The high-level design goal for our out-of-order (OOO) per-
formance core was to maximize performance while remaining
within a reasonable bound of complexity. The out-of-order
backend was also designed to share the same interface as the
in-order backend to simplify top-level integration. Because of
this, our out-of-order backend does not support superscalar
execution. However, we designed it to eliminate as many
internal stalling conditions as possible recovering from branch
mispredictions in one cycle as soon as the branch executes,
pipelining our issue logic to support back-to-back execution
of dependent instructions, allowing loads to issue out-of-order,
internally forwarding data from stores to loads, and building
a data cache controller that can handle 8 simultaneously
outstanding memory transactions.

With no stalling conditions, an instruction takes 7 cycles to
move through the OOO backend:

1) Fetch: register the input from AON fetch

2) Dispatch: rename source operands and allocate appropri-
ate locations in reservation station (RS), re-order buffer
(ROB), and store queue (if applicable)

Issue 1: Select up to two instructions to issue, and for
instructions requiring one cycle to execute, arbitrate for
the common data bus (CDB).

Issue 2: Read from the physical register file (PRF). For
one-cycle execution operations, broadcast the instruc-
tion’s tag on the CDB.

Execute: Perform arithmetic in one of 5 functional units:
ALU, branch functional unit (BFU), multiplier (4-stages,
fully pipelined), load buffer, and store queue.
Complete: Broadcast the result from execution on the
CDB and write to the PRF.

Retire: Remove the instruction from the ROB. If the
instruction is a store, signal it as ready to write to the
data cache.

3)

4)

5)

6)

7)

Although the latency of instructions is longer in the OOO
backend than the IOP backend, the ability to execute back-
to-back dependent instructions means that the steady-state
throughput remains at least as high as the IOP backend.

The physical register file has 64 registers and supports
four reads and one write per cycle. This allows the OOO
backend to issue up to 2 instructions per cycle and complete
one instruction per cycle. The ROB contains 32 entries to
support up to 32 in-flight instructions, with up to 4 in-flight
branches and 10 active stores. The reservation station contains
20 entries, allowing 20 instruction level parallelism (ILP) of
up to 20.



D. Always-On Domain

The always-on (AON) domain contains the shared fetch
logic, data cache, and multiplexor between both backends. It
also contains the transfer control logic to perform the state
transfers between the OOO and IOP backends.

Our design includes an on-chip 4KB data cache and 4KB
instruction cache. The data cache is split between two banks,
and each has an additional SRAM for control information
(tags, LRU, valid, and dirty bits).

Our fetch logic is pipelined into two stages due to the cycle
latency of instruction cache (I$) reads. The first stage intiates
a read from the instruction cache and predicts the direction of
branches using our gshare [2] branch predictor. The second
cycle receives the data from the instruction cache, and, for
branches and jumps, calculates the branch target. If the branch
is predicted taken, the branch target is fed back into the I-cache
to maintain a steady flow of instructions. In the case of an I-
cache miss, the I-cache controller begins prefetching up to
the next 4 subsequent cache lines while waiting for requested
instruction to return.

A central multiplexor interfaces the AON logic with both
backends. This mux manages both frontend and memory
interfaces that feed instructions and grant memory requests
only to the active backend.

Lastly, the memory infrastructure in the AON domain
manages the data cache and interface with off-chip memory.
The backend mux allows one backend to access the data
cache, and in the event of a cache hit, the active backend
is responsible for requesting the correct block from off-chip
memory. The backend is responsible for fetching data from
off-chip memory because the OOO backend supports multiple
outstanding transactions, while the IOP backend supports only
one. Writes to memory can only come from the store drain,
where dirty data evicted from the data cache resides while
waiting to write back to memory.

Among the three possible memory agents (backend, instruc-
tion cache, and the store drain), the memory arbiter selects one
to access main memory with the following priority:

1) Store drain if it is full. This prevents the need for

backpressuring evictions from the data cache

2) Backend data request

3) Instruction cache request

4) Store drain if not full

III. BACKEND SWITCHING ARCHITECTURE

The register online controller (ROC) estimates the per-
formance of both backends and initiates a transfer register
when the power-performance product moves above or below
a statically defined threshold. Once a transfer is initiated, the
register transfer controller (RTC) activates and begins copying
the register values between the backends. While this transfer
is occurring, the fetch module is disabled so that no new
instructions enter either backend. Once all no more instructions
remain within the currently active backend and all the register
values have been transferred, the muxes switch to the new core
and fetch resumes providing instructions.

A. Register Transfer Controller

The register file is the only stateful component between
the two backends that needs to be transferred. The in-order
backend has a small 2-read 1-write port register file, and the
out-of-order backend has a larger 4-read 1-write register file.
The transfer is accomplished in under 40 cycles.

To minimize the exposed latency of register switching, reg-
isters begin speculatively transferring between the two cores
before the active backend is fully drained. When transferring
from the in-order core and a writeback occurs to a register
that has already been transferred, the register is re-transferred.
When transferring from out-of-order, if a physical register is
not complete, it is skipped and returned to after all registers
are attempted.

The transfer from the out-of-order core is accomplished
through a 3-stage pipeline. The first stage selects a register
from the bit-vector and queries the RAT for physical register
translation and readiness. The second stage reads the register
from the physical register file and is stalled if the read port
is occupied. The final stage writes to the in-order backend’s
register file.

The transfer from the in-order core is accomplished through
a 2-stage pipeline. The first stage selects and reads a register
from the in-order register file, stalling if the port is occupied.
The second stage writes the register value to the out-of-order
backend. The out-of-order RAT is also resetted such that
physical register n maps to architectural register n.

B. Reactive Online Controller

1) Performance Estimator: To determine whether it is
beneficial to switch to the other backend, the performance
of the other backend needs to be estimated. This estimation
is accomplished through a linear model using performance
counters on the active backend. Eq. 1 defines the model which
consists of a constant (ag) and several input metrics (x;) and
corresponding coefficients (a;).

y=ao+ Yy am; (D

Gathering the appropriate metrics to predict the performance
of the in-order pipeline is relatively straightforward. The in-
order pipeline stalls for multiply and load instruction execu-
tion, cache misses, and branch mispredictions. Performance
counters count each of these events.

Out-of-order backend’s performance prediction is more
challenging. The instruction level parallelism (ILP) and mem-
ory level parallelism (MLP) are important features of a pro-
gram that impact the out-of-order backend’s performance. To
measure ILP from the in-order core’s execution, we count the
number of times we activate data forwarding paths between
pipeline stages. To measure MLP, we maintain a small history
buffer of the load addresses that have passed through the in-
order backend and count the number of times an incoming
load address matches an element in the history buffer.

For training the coefficients, we ran the two backends inde-
pendently on a CNN program (Alexnet) with added functions



to induce cache misses, multiply heavy periods, and arithmetic
heavy periods. The models were trained using the metrics from
one backend and the clock count from the other backend.
Figure 2 shows the significance of each metric to the final
performance prediction.
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Fig. 2: Feature contributions for the out-of-order (O0oO) and
in-order (IoP) backend’s performance prediction

2) Switching Decision: Every quantum (1000 instructions
dispatched), ROC predicts the performance of the inactive
backend using the linear regression model discussed earlier. If
the difference between the performance of the in-order back-
end and out-of-order backend is smaller than a static threshold,
then execution is switched to the in-order backend; otherwise,
execution is switched onto the out-of-order backend. Execution
starts on the out-of-order backend since it is able to warm
up the caches faster. The PI controller presented by Lukefahr
et al [3] was also implemented and tested. However, due to
poorer accuracy of our performance predictor and the lack of
large test benchmarks, the PI controller did not result in a
performance benefit compared to a static threshold.

IV. VERIFICATION

To verify the design, a suite of programs was run on the
processor and the final state of memory was compared with
the correct memory output. The correct memory files were
created by running the programs on a correct implementation
of a RISC-V processor. This correct processor was a very
simple 5-stage pipeline that incurs no hazards due to only
allowing one instruction in the pipeline at a time. We simulated
this processor with no memory hierarchy and instantaneous
memory latency to ensure functional correctness.

Our test programs included both simple programs written in
assemby and more realistic C programs that model real-world
workloads. The C programs were compiled and tested on dif-
ferent optimization flags to ensure full functional correctness.
Some examples include alexnet, a model of a convolutional

neural network, outer_product, a program that performs a
series of matrix outer products, and various sorting algorithms
such as quicksort, mergesort, and insertionsort.

Both backends were tested on the entire suite in behavioral
verilog, post-synthesis netlists, and post-APR before being
integrated. After each backend was verified, the top-level was
constructed by integrating the two backends with AON and
tested on the entire suite pre-synth, post-synth, and post-APR.
We tested the full system with each backend hard-wired to the
centralized fetch, and then introduced RTC transfers during
simulation to verify that a state transfer could be completed
successfully.

V. PHYSICAL DESIGN

The Verilog was designed to support varying degrees of
synthesis, with the OOO backend heavily reusing shared
modules defined hierarchically, and the majority of the AON
block being composed of compiled memories. However, we
found that the APR tools were able to handle each whole
backend without the need for additional hierarchies, so we
left our design with three main hierarchy levels: compiled
memories, individual partitions (AON, OOO, I0OP), and top-
level integration.

Block Dimensions Pins
W (mm) | H (mm) | Area (mm?) | In | Out | Total
AON 1.56 1.76 2.75 381 | 587 968
10P 0.24 1.86 0.45 250 | 155 405
000 1.16 1.86 2.16 257 154 411
Top 3.61 2.56 9.24 72 84 172

TABLE I: Area and IO by partition

The area for each partition and the number of 1Os is shown
in Table I. The OOO backend is approximately 4 times the
size of the low-power IOP backend, and the vast majority of
the AON area comes from the caches.

A. Interconnect

To simplify integration, we made the OOO and AON
interfaces identical and aligned their pins with the AON pins.
We matched the heights of all partitions and placed the AON
block in the center of both backends since all backend IOs
flow through the AON partition.

The OOO and IOP backends have the same interface with
AON with the exception of a small number of control signals
for the ROC that output statistics on program execution.
A script we wrote extracts these pins from the synthesized
netlists and aligns them between the AON block and respective
backend to simplify top-level integration.

B. Placement

The full design floorplan is shown in Figure 3a. This
floorplan includes the placement of the 11 compiled SRAMs
and 172 chip pads. In addition to signal pads, 16 power pads
(VDD, VSS, DVDD, DVSS on each side) and an electrostatic
discharge detection pad were placed in the padring. In each
partition, the SRAM macros were placed and rotated to
efficiently enable signal routing. Signal routing was done using
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metal layers M1 to M4, reserving layers M5 and M6 for the
power grid.

C. Power Grid

Each partition has its own power grid, with 4um power
rings, 2pum M35 vertical stripes, and 4m M6 horizontal stripes.
The power stripes over the AON partition had greater sparsity
to minimize supply noise on the sensitive SRAM macros. As
the TSMC 180nm process only offers 6 metals, the global
power grid was generated with the same metal layers as the
partition grids. To accomplish this, the metal stripes of each
partition were aligned and directly overlapped by the global
power grid.

VI. RESULTS
A. Density

The top level core density is 90.34%, with core densities
of 85.17%, 82.04%, and 53.91% for the OO0, IOP, and AON
partitions respectively.

B. Timing
Our design meets post APR timing with a clock frequency
of 80MHz. The setup and hold margins on all nets are 215ps

and 77ps respectively. The clock uncertianty used for these
results is 200ps.

C. Power

Using PrimeTime, we were able to obtain power estimates
on our individual modules and overall top level design. To
account for the fluctuations between different programs, we
ran our entire test suite through each individual backend to
get an accurate estimate. The average total power for IOP and
00O came out to 31.497mW and 127.625mW respectively.
The leakage of each was 1.76uW and 8.08,W.

Unfortunately, due to the large size of the waveform files
generated, we were not able to run the entire test suite through
our top level design. Instead, we chose two programs sitting
at the low and high ends of power draw based off of our data

from the individual backends. Since we designed our top level
hierarchically, we were able to see the breakdown between
each module. For both programs, the AON module had a total
power of 110mW and leakage of 26W.

By combining the numbers from the three modules, we
are able to estimate the total power of our top level de-
sign. For the test program Alexnet, IOP is used 70/208
quantum’s, roughly 20% of the time. With this, we can
use AON+IOP*0.2+000%0.8 to calculate a total power
of 218mW. Compared to the estimate of OOO calcu-
lated via AON-ROC-RTC+00O0 = 110-0.866-1.17+127.625 =
235.589mW, our design improves power consumption by 7%.

Due to the negligible amount of leakage in each individual
backend, we decided that power gating the unused one would
not be worthwhile. Additionally, the backends should inher-
ently be clock-gated when unused because no instructions are
flowing in, meaning none of the registers should be switching.

D. ROC CPI Predictions

To show the accuracy of the predictions, figure 4a compares
the predicted performance and the true performance of the
two backends across all out test programs. The predictions
are reasonably close to the true performances except for the
spikes around quanta 400 and 1000. These are likely due to
the test programs exhibiting largely different behavior than the
programs the model was trained on. We attempted training the
model on the data from all programs, however, this lead to
poorer performance overall. We suspect this is due to some of
our test programs being poor models of real-world program
behavior.

E. ROC Switching

Figure 4b demonstrates the ROC switching to the in-
order core when the performance difference between the in-
order and out-of-order backend lessens throughout Alexnet’s
execution.
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F. Final Design Status

We were able to get each individual block (OOO, IOP,
AON) in our design DRC (besides metal and poly density)
and LVS clean, but were not able to run DRC and LVS on
the final top-level integration due to limited time. The top
level without pads was fully placed and routed with a global
power grid, resulting in no Innovus violations, and functionally
verified. Due to a technology specific issue with the pad filler
commands, the integration of all 172 pads had to be done
manually in Virtuoso. This resulted in the pad ring being
designed, power routed, and aligned with the top level pins,
but signal routing was not completed by the design freeze
deadline.

We were able to make some minor Verilog changes late in
the project to simplify the integration process, such as adding
input/output flops and adjusting the ports between blocks, but
there were still a couple final APR bugs we were not able to
resolve.

G. Reflection

About halfway through the project, we realized that the Ver-
ilog design was much more intensive than we had originally
anticipated. The architectural adaptions required by memory
compiler restrictions and the need to fully verify two individual
backends proved very challenging and time-consuming. It took
significantly longer to achieve fully correct behavioral Verilog
than we had originally planned for. Our final design had over
20,000 lines of Verilog, and although we began with some
existing code, most of this was written during the semester.

Even though we worked on developing our synthesis and
APR flows in parallel with Verilog development, we still found
ourselves time-limited on the final APR flows towards the
end of the project. We are very satisfied with the architecture
and performance of our design, but we believe we stretched
ourselves too thin throughout the project. To finish every
component, we were only able to allocate a single person

to each backend, and one person to physical design flow
development for the first half of the project. Combined with the
fact that 4 of our 5 members are instructors for other courses,
time was a strong limiting factor in our overall success.

VII. CONCLUSION

Nonetheless, we believe that our design provides a valuable
proof-of-concept of the composite cores approach to heteroge-
neous processors. We were able to achieve fine-grained switch-
ing between backends and demonstrate the viability of this
design approach. To our knowledge, the original Composite
Cores paper [3] was only tested in behavioral simulation,
meaning our work is the first to actually bring this design
to a physical chip. Although this approach does not support
simultaneously operating both the low-power and performance
cores, it does allow for fine-grain context switching at a
resolution not possible with other architectures. Moreover, the
overhead of adding the small in-order core is quite small, as
it only adds 0.45 mm? to the processor’s area, which, when
including the need for the ROC and RTC blocks, adds only a
15% increase in the top level area (excluding pads). We believe
that achieving the power reduction possible with the in-order
core while only adding minimal percentage area overhead is
a valuable result.
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